Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong Dae Choi, ${ }^{a}$ Ji Bong Jang, ${ }^{\text {a }}$

 Pil Ja Seo, ${ }^{\text {a }}$ Byeng Wha Son ${ }^{\text {b }}$ and Uk Lee ${ }^{\text {b }}$ *${ }^{\text {a }}$ Department of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-ku, Busan 614-714, Republic of Korea, and ${ }^{\text {b }}$ Department of Chemistry, Pukyong National University, 599-1 Daeyeon-3dong Nam-ku, Busan 608-737, Republic of Korea

Correspondence e-mail: uklee@pknu.ac.kr

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.052$
$w R$ factor $=0.147$
Data-to-parameter ratio $=18.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2,6-Dimethyl-3,7-bis(methylsulfanyl)benzo-[1,2-b:4,5-b']difuran

In the centrosymmetric molecule of the title compound, $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}_{2}$, the benzo[1,2-b:4,5-b]difuran group is almost planar. The structure is stabilized by aromatic $\pi-\pi$ stacking and $-\mathrm{CH}_{2}-\mathrm{H} \cdots \pi$ interactions.

Comment

This work is related to a previously reported communication on the isomeric benzodifuran analogue, 2,5-dimethyl-3,4-bis(methylsulfanyl)benzo[1,2-b:4,3-b']difuran (Choi et al., 2006). The title compound, (I), was prepared by the one-pot reaction of hydroquinone with an excess of α-chloro- α (methylsulfanyl)acetone in the presence of zinc chloride. In order to determine the overall molecular conformation in the crystal structure, an X-ray crystallographic analysis has been carried out and the results are reported here.

(I)

The asymmetric unit of (I) consists of one half-molecule (Fig. 1); the molecule is centrosymmetric. The bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987).

Rings $A(\mathrm{C} 2-\mathrm{C} 5 / \mathrm{O})$ and $B\left(\mathrm{C} 1 / \mathrm{C}^{\mathrm{i}} / \mathrm{C} 2 / \mathrm{C} 2^{\mathrm{i}} / \mathrm{C} 3 / \mathrm{C} 3^{\mathrm{i}}\right)$ are each planar, with maximum deviations of 0.0032 (3) (O1) and $0.0015(2) \AA(\mathrm{C} 2)$ from the least-squares planes (symmetry code as in Fig. 1). They form a dihedral angle of 0.82 (3) ${ }^{\circ}$. Ring A has a local pseudo-mirror plane passing through O 1 and the mid-point of the $\mathrm{C} 3-\mathrm{C} 4$ bond, as evidenced by the torsion angles (Table 1). The benzo[1,2-b:4,5-b']difuran group is nearly planar with a puckering amplitude $Q_{\mathrm{T}}=0.0453$ (5) \AA (Cremer \& Pople, 1975).

The crystal structure is stabilized by aromatic $\pi-\pi$ stacking and $-\mathrm{CH}_{2}-\mathrm{H} \cdots \pi$ interactions (Fig. 2). The separation of the furan groups, $C g \cdots C g^{\text {iii }}$, is 3.582 (1) $\AA(C g$ is the centroid of the C2-C5/O1 ring; symmetry code as in Fig. 2), which clearly indicates the presence of a $\pi-\pi$ stacking interaction. The nearest ring centroid separation of $C g \cdots C g^{\text {iii }}$ is 3.614 (3) \AA (symmetry code as in Fig. 2). The packing of the molecules is additionally stabilized by $-\mathrm{CH}_{2}-\mathrm{H} \cdots \pi$ interations between adjacent furan rings, with a $-\mathrm{C} 6-\mathrm{H} 6 C \cdots C g^{\mathrm{ii}}$ distance of $2.91 \AA$ (symmetry code as in Fig. 2).

Experimental

The title compound, (I), was prepared according to the method described previously for the benzodifuran analogue, 2,5-dimethyl-3,4-bis(methylsulfanyl)benzo[1,2-b:4,3-b']difuran (Choi et al., 2006) [m.p. $452-452 \mathrm{~K} ; R_{\mathrm{F}}=0.60\left(\mathrm{CCl}_{4}\right)$]. Crystals were obtained by recrystallization from cyclohexane.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}_{2}$
$M_{r}=278.37$
Triclinic, $P \overline{1}$
$a=5.2073(5) \AA$
$b=8.2548$ (6) \AA
$c=8.5234$ (6) \AA
$\alpha=105.616$ (6) ${ }^{\circ}$
$\beta=98.690(7)^{\circ}$
$\gamma=103.564(6)^{\circ}$
$V=333.91(5) \AA^{3}$
$Z=1$
$D_{x}=1.384 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.39 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, colourless

Data collection

Stoe Stadi-4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: none 1530 measured reflections 1530 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0799 P)^{2}\right. \\
& \quad+0.308 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.44 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.41 \mathrm{e} \AA^{-3}
\end{aligned}
$$

1339 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=27.5^{\circ}$
3 standard reflections frequency: 60 min intensity decay: 1.6%
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.147$
$S=1.01$
1530 reflections
82 parameters
H -atom parameters constrained

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 5$	$0.6(2)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$0.0(3)$
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4$	$-0.6(3)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 1$	$-0.4(2)$
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$0.3(2)$		

H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA$ for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: STADI4 (Stoe \& Cie, 1996); cell refinement:STADI4; data reduction: X-RED32 (Stoe \& Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Figure 1
The molecular structure, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) $-x,-y,-z$.]

Figure 2
A partial packing diagram of (I). $-\mathrm{CH}_{2}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions are shown as thin and thick dotted lines, respectively. Cg is the centroid of the (C2-C5/O) ring. [Symmetry codes: (i) $-x,-y,-z$; (ii) $x-1, y, z$; (iii) $1-x,-y,-z]$.

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Choi, H. D., Jang, J. B., Seo, P. J., Son, B. W. \& Lee, U. (2006). Acta Cryst. E62, o2722-o2724.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1996). STADI4 (Version 1.09) and X-RED32 (Version 1.09). Stoe \& Cie GmbH, Darmstadt, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

